37 resultados para Pancreas

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mammalian pancreas, the endocrine cell types of the islets of Langerhans, including the α-, β-, δ-, and pancreatic polypeptide cells as well as the exocrine cells, derive from foregut endodermal progenitors. Recent genetic studies have identified a network of transcription factors, including Pdx1, Isl1, Pax4, Pax6, NeuroD, Nkx2.2, and Hlxb9, regulating the development of islet cells at different stages, but the molecular mechanisms controlling the specification of pancreatic endocrine precursors remain unknown. neurogenin3 (ngn3) is a member of a family of basic helix–loop–helix transcription factors that is involved in the determination of neural precursor cells in the neuroectoderm. ngn3 is expressed in discrete regions of the nervous system and in scattered cells in the embryonic pancreas. We show herein that ngn3-positive cells coexpress neither insulin nor glucagon, suggesting that ngn3 marks early precursors of pancreatic endocrine cells. Mice lacking ngn3 function fail to generate any pancreatic endocrine cells and die postnatally from diabetes. Expression of Isl1, Pax4, Pax6, and NeuroD is lost, and endocrine precursors are lacking in the mutant pancreatic epithelium. Thus, ngn3 is required for the specification of a common precursor for the four pancreatic endocrine cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the pancreas depends on epithelial-mesenchymal interactions. Fibroblast growth factors (FGFs) and their receptors (FGFRs 1–4) have been identified as mediators of epithelial-mesenchymal interactions in different organs. We show here that FGFR-2 IIIb and its ligands FGF-1, FGF-7, and FGF-10 are expressed throughout pancreatic development. We also show that in mesenchyme-free cultures of embryonic pancreatic epithelium FGF-1, FGF-7, and FGF-10 stimulate the growth, morphogenesis, and cytodifferentiation of the exocrine cells of the pancreas. The role of FGFs signaling through FGFR-2 IIIb was further investigated by inhibiting FGFR-2 IIIb signaling in organocultures of pancreatic explants (epithelium + mesenchyme) by using either antisense FGFR-2 IIIb oligonucleotides or a soluble recombinant FGFR-2 IIIb protein. Abrogation of FGFR-2 IIIb signaling resulted in a considerable reduction in the size of the explants and in a 2-fold reduction of the development of the exocrine cells. These results demonstrate that FGFs signaling through FGFR-2 IIIb play an important role in the development of the exocrine pancreas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bioactive macrophage factor, the polypeptide daintain/allograft inflammatory factor 1 (AIF1), has been isolated from porcine intestine. It was discovered when searching for intestinal peptides with effects on insulin release, and its purification was monitored by the influence of the peptide fractions on pancreatic glucose-induced insulin secretion. Daintain/AIF1 is a 146-aa residue polypeptide with a mass of 16,603 Da and an acetylated N terminus. An internal 44-residue segment with the sequence pattern –KR–KK–GKR– has a motif typical of peptide hormone precursors, i.e., dibasic sites for potential activation cleavages and at the sequentially last such site, the structure GKR. The latter is a signal for C-terminal amide formation in the processing of peptide hormones. Daintain/AIF1 is immunohistochemically localized to microglial cells in the central nervous system and to dendritic cells and macrophages in several organs. A particularly dense accumulation of daintain/AIF1-immunoreactive macrophages was observed in the insulitis affecting the pancreatic islets of prediabetic BB rats. When injected intravenously in mice, daintain/AIF1 at 75 pmol/kg inhibited glucose (1 g/kg)-stimulated insulin secretion, with a concomitant impairment of the glucose elimination, whereas at higher doses (7.5 and 75 nmol/kg), daintain/AIF1 potentiated glucose-stimulated insulin secretion and enhanced the glucose elimination. Its dual influence on insulin secretion in vivo at different peptide concentrations, and the abundance of macrophages expressing daintain/AIF1 in the pancreatic islets of prediabetic rats, suggest that daintain/AIF1 may have a role in connection with the pathogenesis of insulin-dependent diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of the exocrine pancreas produce digestive enzymes potentially harmful to the intestinal mucosa. Dopamine has been reported to protect against mucosal injury. In looking for the source of dopamine in the small intestine, we found that the duodenal juice contains high levels of dopamine and that the pancreas itself has a high dopamine [and dihydroxyphenylalanine (dopa)] content that does not change significantly after chemical sympathectomy. Furthermore, we were able to demonstrate tyrosine hydroxylase (TH) activity in control pancreas as well as in pancreas from rats after chemical sympathectomy. Immunostaining and in situ hybridization histochemistry confirmed both the presence of TH, dopamine, and the dopamine transporter, and the mRNAs encoding TH and dopamine transporter, and the presence of both types of vesicular monoamine transporters in the exocrine cells of the pancreas. Since there are no catecholaminergic enteric ganglia in the pancreas, the above results indicate that pancreatic cells have all the characteristics of dopamine-producing cells. We suggest that the pancreas is an important source of nonneuronal dopamine in the body, and that this dopamine has a role in protecting the intestinal mucosa and suggests that dopamine D1b receptor agonists might be used to help mucosal healing in the gastrointestinal tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substance P, acting via the neurokinin 1 receptor (NK1R), plays an important role in mediating a variety of inflammatory processes. However, its role in acute pancreatitis has not been previously described. We have found that, in normal mice, substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are both increased during secretagogue-induced experimental pancreatitis. To evaluate the role of substance P, pancreatitis was induced in mice that genetically lack NK1R by administration of 12 hourly injections of a supramaximally stimulating dose of the secretagogue caerulein. During pancreatitis, the magnitude of hyperamylasemia, hyperlipasemia, neutrophil sequestration in the pancreas, and pancreatic acinar cell necrosis were significantly reduced in NK1R−/− mice when compared with wild-type NK1R+/+ animals. Similarly, pancreatitis-associated lung injury, as characterized by intrapulmonary sequestration of neutrophils and increased pulmonary microvascular permeability, was reduced in NK1R−/− animals. These effects of NK1R deletion indicate that substance P, acting via NK1R, plays an important proinflammatory role in regulating the severity of acute pancreatitis and pancreatitis-associated lung injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptors 1–3 (PAR1, PAR2, and PAR3) are members of a unique G protein-coupled receptor family. They are characterized by a tethered peptide ligand at the extracellular amino terminus that is generated by minor proteolysis. A partial cDNA sequence of a fourth member of this family (PAR4) was identified in an expressed sequence tag database, and the full-length cDNA clone has been isolated from a lymphoma Daudi cell cDNA library. The ORF codes for a seven transmembrane domain protein of 385 amino acids with 33% amino acid sequence identity with PAR1, PAR2, and PAR3. A putative protease cleavage site (Arg-47/Gly-48) was identified within the extracellular amino terminus. COS cells transiently transfected with PAR4 resulted in the formation of intracellular inositol triphosphate when treated with either thrombin or trypsin. A PAR4 mutant in which the Arg-47 was replaced with Ala did not respond to thrombin or trypsin. A hexapeptide (GYPGQV) representing the newly exposed tethered ligand from the amino terminus of PAR4 after proteolysis by thrombin activated COS cells transfected with either wild-type or the mutant PAR4. Northern blot showed that PAR4 mRNA was expressed in a number of human tissues, with high levels being present in lung, pancreas, thyroid, testis, and small intestine. By fluorescence in situ hybridization, the human PAR4 gene was mapped to chromosome 19p12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyrotropin-releasing hormone (TRH) is a brain hypothalamic hormone that regulates thyrotropin (TSH) secretion from the anterior pituitary and is ubiquitously distributed throughout the brain and other tissues including pancreas. To facilitate studies into the role of endogenous TRH, we have used homologous recombination to generate mice that lack TRH. These TRH−/− mice are viable, fertile, and exhibit normal development. However, they showed obvious hypothyroidism with characteristic elevation of serum TSH level and diminished TSH biological activity. Their anterior pituitaries exhibited an apparent decrease in TSH immunopositive cells that was not due to hypothyroidism. Furthermore, this decrease could be reversed by TRH, but not thyroid hormone replacement, suggesting a direct involvement of TRH in the regulation of thyrotrophs. The TRH−/− mice also exhibited hyperglycemia, which was accompanied by impaired insulin secretion in response to glucose. These findings indicate that TRH−/− mice provide a model of exploiting tertiary hypothyroidism, and that TRH gene abnormalities cause disturbance of insulin secretion resulting in marked hyperglycemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to identify, isolate, and transplant progenitor cells from solid tissues would greatly facilitate the treatment of diseases currently requiring whole organ transplantation. In this study, cell fractions enriched in candidate epithelial progenitor cells from the rat pancreas were isolated and transplanted into the liver of an inbred strain of Fischer rats. Using a dipeptidyl dipeptidase IV genetic marker system to follow the fate of transplanted cells in conjunction with albumin gene expression, we provide conclusive evidence that, after transplantation to the liver, epithelial progenitor cells from the pancreas differentiate into hepatocytes, express liver-specific proteins, and become fully integrated into the liver parenchymal structure. These studies demonstrate the presence of multipotent progenitor cells in the adult pancreas and establish a role for the liver microenvironment in the terminal differentiation of epithelial cells of foregut origin. They further suggest that such progenitor cells might be useful in studies of organ repopulation following acute or chronic liver injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PV-1 is a novel endothelial protein shown by immunocytochemical tests to be specifically associated with the stomatal diaphragms of caveolae in lung endothelium. Although the highest expression levels of both mRNA and protein are in the lung, PV-1 also has been found to be expressed in other organs. Using a specific antibody to the extracellular domain of PV-1, we have extended the survey on the presence of this protein at light and electron microscope level in several rat organs. Here we show that by immunofluorescence the antibody recognizes with high specificity the endothelium of the fenestrated peritubular capillaries of the kidney and those of the intestinal villi, pancreas, and adrenals. By immunolocalization at electron microscope level, the antibody recognizes specifically the diaphragms of the fenestrae and the stomatal diaphragms of caveolae and transendothelial channels in the endothelia of these vascular beds. No signal was detected in the continuous endothelium of the heart, skeletal muscle, intestinal muscularis, or brain capillaries or the nondiaphragmed fenestrated endothelium of kidney glomeruli. Taken together, our findings define the only antigen to be localized thus far in fenestral diaphragms. They also show that the stomatal diaphragms of caveolae and transendothelial channels and the fenestral diaphragms might be biochemically related, in addition to being morphologically similar structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A deficiency in essential fatty acid metabolism has been reported in plasma from patients with cystic fibrosis (CF). However, its etiology and role in the expression of disease is unknown. The objective of this study was to determine whether alterations in fatty acid metabolism are specific to CF-regulated organs and whether they play a role in the expression of disease. A membrane lipid imbalance was found in ileum, pancreas, and lung from cftr−/− mice characterized by an increase in phospholipid-bound arachidonic acid and a decrease in phospholipid-bound docosahexaenoic acid (DHA). This lipid imbalance was observed in organs pathologically affected by CF including lung, pancreas, and ileum and was not secondary to impaired intestinal absorption or hepatic biosynthesis of DHA. As proof of concept, oral administration of DHA to cftr−/− mice corrected this lipid imbalance and reversed the observed pathological manifestations. These results strongly suggest that certain phenotypic manifestations of CF may result from remediable alterations in phospholipid-bound arachidonic acid and DHA levels.